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Abstract

We present a finite difference method for computing elastic waves. It is based on writing the
elastodynamic equations in second order formulation. The method is second order accurate in space
and time, and conserves a discrete energy norm. Therefore it is stable for rapidly changing properties
of the elastic material. In many applications, e.g. seismology, the source terms are in the form of
Dirac distributions in space and the solutions contain local singularities. We describe some obser-
vations on the convergence properties and modeling of the source terms. We have also successfully
carried out extensive verifications on standard test cases with known solutions. Furthermore, example
calculations from seismology performed with a parallel code implementing the method are given.

1 Introduction

This paper represents the first part of an effort to construct a fast, robust, and accurate computational
method for elastodynamic problems. The basic discretization method is finite differences and we have
used seismic waves as a first application, allowing us to concentrate on simple geometries such as half
spaces. The new method is designed to preserve a discrete energy norm and is therefore stable for all
problems were the material properties are within the limits imposed by physics.

Wave propagation in elastic media has a wide range of application areas. Some examples are seis-
mology, non-destructive evaluation and medical imaging. The underlying mathematical theory of elas-
todynamics has produced analytical solutions for a number of basic problems since its inception in
1820. However, due to either complicated geometries (in engineering) or complex material properties (in
medicine and earth sciences), the need for numerical approximations is great.

The importance of application areas such as seismology led to early use of computers in elastodynam-
ics [20]. As computers have increased in speed and memory they have been applied to larger and more
advanced problems, a trend that continues today [9]. Finite difference approximations of the elastody-
namic equations have also been around for a long time (see [1] for examples). Early methods were based
on standard central difference approximations and were initially very successful. However, they suffered
from instabilities originating from the discretized boundary conditions whenever the material properties
were outside certain ranges. A description of this difficulty can be found in [10] and [11] where a remedy,
valid for materials with properties not varying in the direction normal to the boundary, is also suggested.
A more general but also more computationally expensive solution is suggested in [22].
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The properties of the non-linear elastic equations are still not fully understood [2], but the linear
approximations used in this paper are considered satisfactory for many applications.

Assuming small, adiabatic strains, waves propagating in solids are described by the elastic wave
equation for the displacement vector u

puy =V - T+ pf, (1)

where p represents density, the vector f is a source term and the stress tensor ¥ is given by Hooke’s law as
the contraction over two indices of the fourth-order elastic moduli tensor C and the second-order strain
tensor € = 1/2(Vu + (Vu)7),

T=2C:¢.

Continuity of the stress field implies that for a boundary with normal vector nn, we have
Th = g, (2)

where g represents applied stress. If g = 0, we obtain what is called the stress free boundary condition.
Equation (1) with boundary condition (2) fulfills the standard continuum mechanical energy estimate
for a domain 2 with boundary 9:

d 1 2 . p—
a/gﬁ(pluﬂ +%: e) dV—/BQg utdS+/Qp(f u;) dV. (3)

Isotropic, non-homogeneous materials can be completely described using only the three parameters
p = p(xX), p = p(x), A = A(x), where the last two are called the Lamé parameters and completely
determines C for this case. Using these three parameters, (1) becomes

0%u
P52

and the stress free boundary condition becomes

=VAV-u) + V- (uVu) + V- (u(Vu)T) + pf, (4)

AV - w)h + (uVu + p(Vu)T)) -h = 0. (5)

The system described by (4) admits wave solutions with two characteristic speeds, ¢, = \/(2u + A)/p for
longitudinal waves and ¢; = y/pu/p for transverse waves. The focus of this paper is on solving (4) in a
half-space z > 0, subject to (5) on the z = 0 boundary.

For the isotropic case the integral on the left hand side of (3), which is the sum of the kinetic energy
and the potential elastic energy becomes

1 1
/Q 2P lug|® + pTr € + 5/\(Tr €)% dv, (6)

where Tr is the trace operator.

For constant values of g > 0 and A > 0, (4) together with the stress free boundary condition (5) is
also known to be weakly well-posed in L? [4].

The problems encountered by the early finite difference approximations of (4) when the ratio of ¢, over
¢s became too large led to alternative formulations where the elastic wave equation was rewritten as a
first order system. Computer codes were then based on discretizations of these first order formulations on
staggered grids [18]. Most later efforts for finite difference methods have worked with first order systems.
In later years more expensive methods such as spectral element [12] and the pseudo-spectral method have
also gained in popularity.

Our new method solves (4) directly in second order formulation. The reason for choosing the second
order formulation is that we in future work want to include embedded boundaries to allow the inclusion of



topography and other geometric features, building on the technique developed for the second order scalar
wave equation in [13] and [16]. Furthermore we can prove that our method conserves a discrete energy
for a domain with either prescribed stress and/or prescribed displacements on the boundary, regardless
of material properties as long as A > 0 and g > 0 holds true at all grid points.

In Section 2 we give a extensive description of our new finite difference method that avoids the
stability problems that have plagued earlier discretizations of the elastodynamic equations in second
order formulation. The accuracy of the new method is illustrated with computational results. The
problem of computing elastic waves in truncated domains necessitates the use of non-reflecting boundary
conditions. A brief description of a simple variant of such a condition is found in Section 3. Seismic
events are often modeled using singular source terms and these are analyzed in Section 4. In Section 5 we
illustrate the viability of our approach with examples from real world applications. Finally in Section 6
we discuss the results and give some plans for possible extensions of our method.

2 Discretizing the elastic wave equation

2.1 Preliminary assumptions

Let the displacement vector u = u(x,t) have Cartesian components u = (u,v,w)’, where x = (z,y, 2)T
is the location and ¢ is time. To simplify the presentation, we take f = 0 and g = 0 throughout this
section. In component form, the governing equations are

0 0 0

PuU = % ((2/,L + )\)Uz + /\’Uy + /\’U)z) + 8_y (ll/Uz + Muy) + & (Nuz + ,U/ll)z) ) (7)
0 0 0

P = o (ks + puy) + 3y (2p+ Ny + dug + Aw:) + P (pv: + pwy) (8)
0 0 0

pwn = =- (Hus + pw,) + 3y (hvs + pwy) + P ((2p+ Nwz + Mg + Avy) 9)

in the domain 0 <z <a,0<y <b,0<2<¢,t>0,subject to initial conditions

U(X, 0) = UO(X)7 ’U(X,O) = VO(X)v ’IU(X,O) = WO(X)7 (10)
ug(x,0) = Ur(x), v:(x,0) =Vi(x), w(x,0)=Wi(x). (11)

We impose a stress-free boundary condition at z = 0. In component form

puy + pw, = 0, (12)
v, 4+ pwy =0, 2=0,0<z<a, 0<y<b t>0, (13)
Cp+ Nw, + Aug + Avy, = 0. (14)

For the purpose of discussing energy conservation, we impose homogeneous Dirichlet conditions at z = ¢,
and periodic boundary conditions in the xz and y-directions,

u(z,y,c) =0, 0<z<a, 0<y<b, t>0, (15)
u(0,y,2) =u(a,y,2), uy(0,y,2)=uy(a,y,2), 0<y<b, 0<z<e¢, t>0, (16)

u(z,0,z) =u(z,b,2), uy(z,0,2)=uy(z,b,z), 0<z<a, 0<z<c¢ t>0. (17)

Note that energy conservation can also be obtained when the periodic boundary conditions are replaced
by homogeneous Dirichlet conditions for the displacement.



2.2 Spatial discretization

We introduce a grid with grid points z; = (¢ — 1)h, y; = (j — 1)h, 2zx = (k — 1)h where h > 0 is the
grid size and zn, = a, yn, = b, 2n, = c. Time is discretized with step size d¢ > 0 on a grid t,, = ndy,

n =0,1,..., and we denote a grid function by u; , = u(zi,yj, 2k,tn). The superscript for time will be
suppressed When the meaning is obvious. We use the usual definitions of divided difference operators,
1 1
Divijk = 5 irgk = vigk), DIvigr = Divieize, Df =5 (D +DZ),

and corresponding expressions in the y and z-directions. We also define

D-zi-viﬂ',h k=1,

D%“i,j,k
Divijr, k>2,
and the shift operators
Elz/z(%',j,k) Yit1/2,5,k 1= W7
EY (Vi) = Vigr/2 - W
Ef 5 (Vijk) = Yigikr1/2 1= W

We form the spatially discrete equations at the grid points 1 <4 < N;—1,1<j < N,—-1,1 <k < N,-1.
Grid point indices are suppressed to improve readability.

d2u T T z
pos =D" (B2(2n+ ND3u) + DY (BY, (1) DY) + D= (B s (s
+ DF (ADgv + AD§w) + DY (uD5w) + Dj (uDgw) =: L™ (u, v, w), (18)
d2v x xr xr z
pos = D2 ( 7 (i )D+v) +DY (Ef/2(2u+ A)Div) +D* ( 7 (1) Dio
+ D§ (uD§u) + D§ ()\Dgu + )\Dgw) + lf)\:"j (uD¥w) =: L) (u,v,w), (19)
d2w x xr xr z
P o =D? ( 1/2(,u)D+w) + DY (Ei}/z( )Diw) +D* ( 12(20+ A)D3 )

+ D§ (uﬁ‘éu) + D§ (pﬁgv) + Dz (ADEu + AD¥v) =: L) (u, v, w). (20)

Note: The discrete solution will be second order accurate in space, even though ffg reduces to a one-
sided divided difference operator on the boundary, see Lemma 4 below.
The free surface boundary conditions (12)-(14) are discretized by

2 (hij3/2D3wiga + i1 /2D i) + prija Dgwign = 0, (21)
1
3 (Hij,3/2D30i1 + paja/2D3vig0) + piga Diwiga =0, (22)
1
3 (21 + N)ij,3/2D5wiga + (2p+ X)i g1 2D5wigo) + X1 (Dguiga + Dviga) =0, (23)

for 2<i <N, —1,2<j <N, —1. The Dirichlet boundary condition (15) is discretized by

ui’j7Nz = 07 (24)



for 1 <3 < Ng, 1<j <N, The discrete counterpart of the periodic boundary conditions (16) and (17)
are

un, Gk = U1k, Uojk = UN,—1,5k> (25)
N,k = Wilk, W0k = WiN,—1,k (26)
for 1<i<N,, 1<j<N,1<k<N,.

We proceed by showing that the above scheme satisfies an energy estimate. We first define a weighted
scalar product and norm:

N,—1Ny—-1 h N.—1
(w,0)p =h> Y > <§wz’,j,1vz’,j,1 +h Yy wi,j,kvz',j,k> ;I = (0, 0).
i=1 j=1 k=2

Our proof of stability of the scheme relies on the spatial discretization being self-adjoint and negative
definite (elliptic). The self-adjoint property is expressed in

Lemma 1 For all real-valued grid functions (u®,v°,w®), (u',v',w') which satisfy the discrete boundary
conditions (21)-(23), (24), and the periodicity conditions (25)-(26), the spatial operator (L), L") L(*))
is self-adjoint, i.e.,

(uO,L(”)(ul,vl,wl))h + (UO,L(“)(ul,vl,wl))h + (wO,L(w)(ul,vl,wl))h =

(ul,L(“)(uo,vo,wo))h + (vl,L(”)(uO,vo,wo))h + (wl,L("’)(uO,vO,wO))h. (27)

Proof: See appendix A. []
From the self-adjoint property it follows that there exists a conserved quantity:

Lemma 2 All real-valued solutions (u,v,w) of the semi-discrete scheme (18)-(20) subject to the boundary
conditions (21)-(23), (24), and the periodicity conditions (25)-(26), satisfy

12 2ue i+ 10" el 3+ llo™ *welli — (u, L (w0, w))a = (0, L) (u, 0, w) )n — (w, L) (u,0,w))n = C, (28)

where C' is a constant which depends on the initial data and

(u, L® (u,v,w))h S (Diu,Ef/z(zu + /\)Diu)h - (Diu,Ef/z(u)Dgu)h

~ (D3u, B y(w)D3u) — (Dfu, ADYv + ADjw)  — (Dfu, uD5v),

_ B3
- (DS%MDS“’),L = 5 D tiga(Diuige), (29)
07

(029w, v,0)) == (D3, Bfp()D30), — (DYv, BY (20 + NDYv)

- (Div,Ef/z(,u)Div)h — (Dgv, pDyu), - (Do, AD§u + AB’gw)h

_ 3
- (DSU,MDé'w)h 2 D ijissa(Diviga)?, (30)
i



(w,L(“’)(u,v,w))h =-— (Diw,Ef/z(u)Diw)h - (Diw,Ef/Q(u)Diw)h
— (Dj_w,Ef/2 (2p + /\)Diw)h - (Dgw,pbvgu)h - (Dgw,pbvgv)h

— h3
~ (Dgw. ADGu+ ADYv) | = 5 D Crtias + Mias2)(Diwisn)”. (31)

%,

Proof: Lemma 1 gives

Q.|Q‘

- (1072wl + 10200l + 0" 2wl }) =
(ut7L(U)(u7U7w))h + (/UtaL(v)(uavaw))h + (wt7L(w)(uavaw))h =

1
5 ((uhL(u)(uavaw))h + (vt7L(v)(u7v7w))h + (thL(w)(u7U7w))h)

DN | =

1
+ 5 (0 L9t v, w0))n + (0, L0 (s, v, we) )+ (w, L0 (e, v, we))n ) =
;ddt <(u L( )(U,U,'UJ))h + (U,L(”)(u,v,w))h + (w7L(w) (U,U,’U]))h) .

Integrating the above relation in time starting at ¢ = 0 gives (28) and shows that the constant C
depends on the initial data. Equations (29), (30), and (31) follow from the proof of Lemma 1 by setting
(0%, w%) = (u', 0", w') = (u,v,w) in (54), (56), and (57). []

To prove that the scheme is stable, we need to show that the conserved quantity in (28) is a norm,
that is, we need to show that the spatial operator is negative definite. In particular, we need to show that

the sum of the mixed terms in (29), (30), and (31), (such as (Dgw, pb%u)h), is dominated by the sum of

the strictly positive terms (such as (Diw EY /2( )Diw)h when p > 0). This is straight forward in the

corresponding continuous case and leads to the well known formula for the elastic energy. What makes
the discrete case more challenging is that all derivatives in the strictly positive terms are discretized by
compact operators (such as D% ), while they are discretized by centered differences (such as D) in all
mixed terms. While numerous numerical experiments indicate that the conserved quantity (28) always
is positive for positive p and A, we only prove this property in the fully periodic case, i.e., when the free
surface boundary conditions (21)-(23) and the Dirichlet condition (24) are replaced by

Wi N, = W51, Wijo =UijN,—1, 1<i<Ng, 1<j<N,. (32)

To match the periodic boundary conditions, we define modified spatial operators E("), Z(”), and L(®) by
replacing D¢ by D¢ in (18)-(20). Furthermore, we also need a basic scalar product and norm for the fully
periodic case,

No—1Ny—1N.—1
w U 2 = h3 Z Z Z wla]akvlﬂyk’ ||w||2 - (w w)
i=1 i=1 k=1

We have

Lemma 3 For all real valued grid functions (u,v,w) which satisfy the periodic boundary conditions (25)-
(26), (32) the operator (EW),i(v),Z(w)) is negative definite when p > 0 and X > 0; it is semi-definite
when =0 and X > 0, it is indefinite when p < 0 and X > 0, and it is positive definite when p < 0 and



A <0. In particular,

— (u,i(”)(u,v,w))2 — (U,E(”)(u,v,w))2 - (w,z(w)(u,v,w))2 =

2 (D5, Bijo(w)D3u) +2 (DY, B ()DYo) +2 (Diw, B (w)Diw)
+ (D§u + D§v, p(Dfu + Dgv)),
+ (D§u + Dyw, u(Dgu + Dgw)),
+ (D§v + Dfw, p(D§v + Diw)),
+ (DEu + Dv + Diw, \(Dgu + Dv + Diw)), + h°R/4, (33)

where the remainder term is

R = (D% D*u, )\Dinu)2 + (DYDY u, ,uDiDliu)2 + (D3D?u, ;LDiDiu)2
+ (D_Z,_va,prf_D“_”v)2 + (DY DY, /\DiDzv)2 + (DZD?wv, /LDj_DZ_U)2
+ (D3 D* w, pD% D* w),, + (DYDY w, uD% DY w), + (D7 D* w,\D7D* w),. (34)
Proof: Equations (33) and (34) are derived in appendix B. When p > 0 and A > 0, all terms are

positive and the operator (E<u), Z(”), Z(“’)) is negative definite. When p = 0 and A > 0, the operator has

a null-space consisting of grid functions with zero discrete divergence. When p < 0, all terms containing
p are negative. If also A < 0, all terms become negative and the operator becomes positive definite. [ |

The accuracy of the solution is governed by

Lemma 4 The solution of the semi-discrete scheme (18)-(20) subject to the boundary conditions (21)-
(23) and (24) is a second order accurate approzimation of the solution of the continuous equation (7)-(9)
subject to the boundary conditions (12)-(14) and (15).

Proof: See appendix C. []

2.3 Fully discrete equations
We discretize (18)-(20) in time according to

n+1l _ 2u™ n—1
p () = L o), (35)
t
n+1 — un n—1
p (“ il ) = L@, o™, w®), (36)
t
n+1l _ 2™ n—1
P (w (’151; +w > — L(w)(un,vn,ww). (37)
t

For simplicity, we introduce the weighted norm

N,—1Ny—1 h N,—1
(wav)p =B’ Z Z <§pi,j,1wi,j,lvi,j,1 +h Z pi,j,kwi,j,kvi,j,k> ) ||U||,Z> = (Uav)p-
i=1 j=1 k=2

Trivial calculations show
(w,p™"0), = (w,v), - (38)



To show that the fully discrete scheme is energy conserving, we consider the quantity

Coltnsr) = |Diu”|® + | DEv”||” + | Diw™||” = (wnt, p~ L) (um, o™, w™)
+ p + p + P P

_ (Un—i-l, p—lL(v) (un, ,Un, ,wn)) _ (wn—i-l’p—lL(w) (un’ ’U", wn))
p p

= [Dur]; + Do, + [ D4
— (u"H,DiDt_u”)p _ (,Un+1’DiDt_,Un)p _ (wn+1,DiDt_wn)p

It can be shown that C. > 0 when the time step satisfies §;: < Coprh, where Copr is the Courant
number that guarantees stability of the explicit scheme (35)-(37), see [15]. Furthermore,

07 Celtnsn) = a1 + ;= (w20 4+ 8357 O 0™ 0™)
P

o3 o™l = (07, 207 4 8207 L 0, ™)+

™2+ o™ 2 = (w0 20" + 6257 LY (w0, w™) ) . (39)
P

We have,
wnt! + ™ = + 5t2p—1L(u) (un,vn’ wn)’

and corresponding expressions for v and w. Hence,
(u"+1,u"+1 + unfl)p + ||U"+1||3 + ”,Unni_

87 Ce(tns1) = [lu™ ]2 + [lu™(l3 —
_ (wn—i-l,wn—l—l + wn—l)p

(Un+1,1)n+1 +vn—1)p + ||wn+1”z+ ||wn”z

= ™3+ " = (" 2u” 4 8 L (w0 w)) 4

™12 + [lv™H|% - (v”_l,Zv"+62 1L @™ 0" w )) +

||w"||,2)+||w"_1||f,—(w"_1,2w"+52 1Ly 7w K

The relation (38) gives

(u”_l,5t2p_1L(“)(u”,v",w”)) :(u”_l,éfL(“)(u”,v",w")) ,

p h

so Lemma 1 gives
(u"fl,éfpflL(“) (u",v”,w")) + <v"71,6t2p*1L(”)(u",U”,w")) -
P p

(w"‘l,5fp_1L(“’)(u",v",w")) =

p

1’ Un_l,wn_l)) + (U", 5t2p—1L(v) (un—l’ 7}n—l’ wn—l)) +
p p

(un’ 5t2p—1L(u) (un—
(,wn7 6t2p—1L(w) (un—l, ,Un—l, wn—l)) . (40)

p

We conclude that
Ce(tn-i-l) = Ce(tn):

that is, C¢(t,) is a conserved quantity for the fully discrete scheme. It is straight forward to show that
C. is a second order accurate approximation of the continuous elastic energy (6).
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Figure 1: Relative error in discrete energy C.(t) as compared to the continuous energy (6) for dif-
ferent grid sizes. The energy is conserved to within round off errors for all cases. As can be seen
the discrete energy converges towards the continuous value with second order in h, as expected.
h =0.04 (%), 0.02 (-), 0.01 (—), 0.005 (—-)

2.4 Numerical tests of the scheme

In the absence of boundaries, a von Neumann analysis shows that the time step restriction for our scheme

1S A A
0 < =

7
dp+A 2 2
\/ P CP 203

evaluated at all grid points and the minimum value taken. Although we have not performed a detailed
spectral analysis for the scheme including boundary conditions, numerical tests have not indicated any
additional restrictions on the time step due to the presence of stress free or non-reflecting boundaries.

In order to test the implementation of our method we first ran a number of computations with
decreasing grid size h and computed the discrete energy C,(t,) at every time step. We started the
computations with a non-zero displacement field and let it evolve with zero forcing, so C.(t,) should
remain constant. One boundary of the grid had a free surface condition and at all other boundaries we
enforced zero displacements. The results are displayed in Figure 1.

As a second test we have checked the order of accuracy of the scheme using the method of analytical
solutions (also known as twilight-zone forcing [6]). We modified the forcing functions f and g so that the
solution of our test problem became a known function u*™"®(x, ¢). We then solved the problem using our
implementation of the method and compared our numerical results to the known solution on a succession
of finer grids in order to check the convergence properties. Our constructed solution was

ut™®(x,t) = sin(w(z — ct)) sin(wy) sin(wz),

true(x ) = sin(wz) sin(w(y — ct)) sin(wz),

w'™¢(x,t) = sin(wz) sin(wy) sin(w(z — ct)),



t=1

h | llva —u"™le | rate
0.04 0.04331
0.02 0.01062 4.079
0.01 0.002654 4.00
0.005 |  0.0006627 | 4.00

Table 1: Errors in max-norm for decreasing h and smooth analytical solution u*“¢. Convergence rate
indicates second order convergence. Here ¢ = 1 and w = 2.

where w and c¢ are constants. The material properties were chosen to vary smoothly according to

p(x) = 1+ cos®(mz) cos® (my) cos? (nz)
A(x) = 1 + sin?(7z) sin? (ry) sin?(72)
p(x) =1.

As earlier a number of tests with increasingly fine grid spacing were run and the errors computed in
the discrete max-norm. The discrete max-norm of a vector grid function v, = (up, v, wy) is defined as
[|Vh|loo = max(max; ;i |un|, max; ;x |vn|,max; j lwy|). Table 1 shows the results. As expected we get
second order convergence when both the forcing and the solution are smooth. Non-smooth forcing and
solutions are discussed in Section 4.

3 Truncating the computational domain

Since we are often interested in computing in open or half-open spaces were the physical boundaries are
too far off to be included in the computational domain we need to truncate it by introducing artificial
boundaries.

At the artificial boundaries of the domain, non-reflecting boundary conditions are imposed. There
exist many different types of non-reflecting boundary conditions of different degrees of efficiency. No
numerical non-reflecting boundary condition is perfect in that there will always be a certain amount of
back scatter. The quality of the boundary condition is measured by the size of the reflected waves. These
represent errors that propagate from the artificial boundary back into the computational domain.

We use non-reflecting boundary conditions of Clayton-Engquist type [7], where the idea is to impose
a differential equation on the boundary. This boundary operator allows wave propagation only in the
outward direction, and is an approximation of the elastic wave equation. A hierarchy of boundary
conditions is obtained by successively increasing the order of the approximation. The first order non-
reflecting boundary conditions for the boundaries x = const are

Up = TCpUy, Uy = T30y, Wy = TCW,,

where the positive signs are taken for the lower boundary x = 0 and the negative signs for the upper
boundary x = a. These are advection equations propagating waves out of domain, in the direction normal
to the boundary. In the y- and z-directions, the conditions are similar advection equations in the direction
normal to the boundary.
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At the edges of the domain, we use compatibility conditions. For example, on the boundaries z = 0
and y = 0, the two conditions

Ut = Cplg, Ut = CsVg, Wt = CsWz, T=0,0<y<d 0<2<¢, t20,

and
Up = Colhy, Vg = CpUy, Wy = CaWy, Y =0,0<x<a, 0<2z<¢c t2>0,

hold. Equating the time derivatives along the edge gives

Cplly = Csly, (41)
CsUz = Cpuy, Y =0,2=0,0<2<¢ t2>0, (42)
CsWyg = CsWy, (43)

This edge approximation is different from [7], where the first order conditions are applied in the diagonal
direction at the edges. Our compatibility conditions are easier to implement, and have turned out in
practice to have better stability properties.

Higher order non-reflecting conditions are more complicated, and their stability and well-posedness
needs to be studied in detail in order to make them practically useful. We plan to present results on
higher order non-reflecting boundary conditions in a future paper.

3.1 Discretization

The non-reflecting boundary conditions are discretized to second order accuracy by the box scheme at
the boundary. For example, at the z = 0 boundary we have
n+1 () n+1 . () n+1 _ n+1 n _an
Upjk ~ Yk T U5k ~ Y24k _ (c)s/as U gk — Y1k T Y25k — Y14k
20t TRk 2h '

for1 <j < Ny, 1 <k < N,. The equations for the displacements v and w are discretized analogously.
For (41), we use the second order discretization

(Cp)3/2,3/2,k(u2,1,k — U1,k + U2,k — U1,2,k) = (03)3/2,3/2,k(ul,2,k — U1,k + U22,k — U2,1,k)
around the edge points (3/2,3/2, k) to obtain

cp +Cs

U 1E = U222k + (u21k —ur2k) 1<k<N,,

P s

where ¢, and ¢, are evaluated at (3/2,3/2, k). Equation (42) is discretized similarly. The w-component
along the edge can not be determined in this way, but it is not needed because there is no zy-derivative
of w in the elastic wave equation. The other edges are discretized analogously.

4 Singular source terms

Certain applications in elastic wave theory have source terms confined to small regions of space. For
seismic applications these might represent fault slips or explosions. Since the grid size typically is larger
than the support of the source, it is customary to approximate the separate sources at points in space,
so that f =" f" and

f" =6(x—x,)9"(t)a", (44)

where 0(x) is Dirac’s delta distribution, g"(¢) describes the time dependence of the source, and a” is a
constant vector giving the direction of the force. These point forces can for instance be used to model
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volcanic eruptions, or outside disturbances applied at the surface. However, to model realistic fault slips
as point sources it is necessary to use force couples [3]. These are also called generalized body forces and
are expressed as

f"=V-06(x—x.)M"g"(t), (45)

where 91" (t) is a symmetric tensor called the source moment tensor with components mgyz, My, etc.

Sources in the form of (44) and (45) with singular behavior in space requires a high degree of smooth-
ness in time in order to avoid spatially non-smooth solutions. As we will show, smoothness and compact
support in time will translate into smoothness in space.

4.1 Numerical modeling

For the point forces described by (44) the spatial dependence is of the general form §(x)d(y)d(z) and for
force couples (45) that expression will be differentiated in one direction, e.g. ¢'(z)d(y)d(z). The solution
of the continuous problems will become singular at the points where the forcing is applied and we cannot
expect full convergence of the numerical solutions in any of the standard LP norms. However, by carefully
approximating the Dirac delta distribution by a smooth regularized function on the grid it is possible to
regain full point wise convergence away from the sources. Following [23, 21], we have used a hat function
approximation for the Dirac distribution when approximating (44)

1 1—|x|/h, x| <h
FRPRIEY R RV o
h 0, elsewhere,

and a cubic polynomial for sources of type (45), where we need a derivative of the Dirac distribution

1—|z/h|/2 = |z/h|* + |z/h]* /2, lz| < h
0°(z) = 34 1= 11[a/h|/6+ |o/h|> — |a/h]*/6,  h<|s| <2h (47)
0, elsewhere.

The three dimensional functions are constructed as products of three one dimensional Dirac distribution
approximations. The sources will thus end up distributed over a number of grid points.

In order to verify the implementations of the different body force types we have performed a number of
tests comparing the numerical results to analytical solutions. For seismic applications the time dependence
g(t) typically has the form of a integrated Gaussian pulse or Ricker wavelet. These functions are C'* but
do not have compact support and the solution will remain singular at the forcing point for all times. For
the numerical tests in this paper we have used high order polynomials with compact support which give
solutions which are smooth after the initial transient and also simplify the analysis.

Even though the source terms are singular in space, smoothness in time will translate into smoothness
in space away from the source. In order to demonstrate this we will look at the related problem of the
scalar wave equation with singular spatial forcing. We study the problem on the unit cube with the forcing
term applied at the center point (0,0,0), zero initial data, and 1-periodic solution in all directions. In
other words we want to solve

pue = V2p+6(x)d(y)d(2)g(t) xe[-1/2 1/2°, ¢>0,
p(x,t=0)=p(x,t =0) =0,
p(x7t)=p(w+l7y+m7z+n7t)7 (l7m7n)€Z'

Here g(t) is smooth and has compact support, i.e. g(t) =0 for ¢ > T'. We introduce a uniform grid with
spacing h = 1/(N +1), where N is even, and discretize in space. We use the 6"#* function to approximate
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the delta distribution. We define the three-dimensional discrete Fourier transform of a grid function as

K,X A f X5,k —<K,X; ;
Z kkayvk < ' >7 f(kwakyakz) = Z (]\(f +]1))36 < m’k>7
k kyj,i

where x; ;1 = (1 —1/2,j — 1/2,k — 1/2)/(N + 1), & = 2mi(ky,ky, k2), < -,- > is the dot product,
and all sums are from —N/2 to N/2. By Fourier transforming the discretized equations we get for the
transformed variable p = p(k,, ky, k=, 1),

d*p

e 229 +89(t) (Ko, ky,k.) € [-N/2 N/2], (48)

N ~

where 0 = 0(k, ky, k.) is the transform of the discretized Dirac distributions

1 e—<N,xi,j,k>

ke k) = D oy

k,j,i=0

and & = \/4 N +1)2(sin? (N+1) + sin ( mky v) + sin®( 7rﬁ:l)). Equation (48) is solved by

Dk, ky, k2, t) = % [sin(/%t)

t
)g(T)dr — (:os(/%t)/0 sin(R7)g(T) dr] . (49)

cos(RT
Integrating (49) by parts gives
t

t
/ (")
0
Blkas by, ks t) = % [Sin2(f~ct)g(t) _ sin(it) /O sin(Ar)g' ()dr + cos(it)g(t) — cos(it) /0 COS(I%T)g'(T)dT] .

Since g(t) = 0 for ¢t > T this reduces to

N

Pkz, ky, kzyt) = % [— sin(&t) /t sin(k7)g' (1) dT — cos(kt) /t cos(kT)g' (T )dT] , t>T.
K 0 0

This procedure can be repeated as long as g(t) can be differentiated and we will gain one order of & each
time, showing that the solution in real space p(x, t) will be smooth for ¢ > T as long as g(t) is sufficiently
differentiable. If g(t) does not tend to zero for large ¢ the solution will remain singular at the forcing
point but will be smooth away from it.

4.2 Free space solutions

The free space Green’s (dyadic) function &(x,x’,t,t') , assuming a homogeneous material, is easily found
in the literature [3]. Due to the trivial spatial dependence of the point forces the convolution reduces to
a integral over t'. Furthermore for polynomial g(t) the integration can be done analytically and a closed
form solution obtained.

For the generalized body forces that contain spatial derivatives of the Dirac delta distribution the
solution is obtained from the convolution of the source with the gradient of the Green’s function. For
our case where the source terms are point forces this simplifies to

t
u(x, t) = Z/ M (t'): V'S(x — x,,x', 8, 1) dt’,
r —0o0
where the primed gradient operates on x’.
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Figure 2: The behavior of the source strength over time. g(t) has compact support on [0,1] and is four
times differentiable.

To verify the implementation and also to see what order of solution convergence can be expected for
problems with singular sources, we have run a number of tests with point sources of the type given by (44)
and (45). The solutions for the continuous case exhibits point singularities proportional to 1/|x| for point
forces (44) and 1/|x|? for point force couples (45), and it is interesting to see how the convergence of the
numerical solutions were affected by the singularities.

The errors were measured in the discrete max-, 2— and 1-norms and computed at two different time
levels. First during the transient phase when the solution is singular at the forcing point. Secondly,
when the forcing has settled down to zero and the solution should be smooth everywhere. The 2—
and 1-norms for a vector grid function vj, are defined as ||vall2 = h® 32, ; ,([unl? + [vn|* + |wn|?) and
[[valli = 1?32, ; x(lun] + [vn] + [wn]). Results are given in Table 2 and 3 for runs with four different grid
sizes h. The behavior of g(t) is shown in Figure 2.

As expected we do not achieve full convergence during the transient phase due to the singular behavior
of the analytical solution. Furthermore, the convergence rate is lower the more singular the solution is.
However, looking at the error away from the singularity we see that the error is smooth in space and
decreases with the expected second order convergence, see Figure 3. For the case of a point moment source
it is important to use the cubic regularized approximation of the Dirac distribution (47), otherwise the
convergence order will be lower than two even away from the source.

After the initial transient the solution becomes smooth everywhere as expected and our results show
convergence according to theory, see Tables 2 and 3.

4.3 Half spaces and Lamb’s problem

Point forcing on the boundary of a half space is referred to as Lamb’s problem [17]. Solutions for the
two and three-dimensional cases have been presented by a number of authors with different degrees of
applicability. For the case of a force applied normal to the surface z = 0, the general solution can be
found in [19] and [8]. Similarly to the free space case we have tested the convergence at two different
times with results given in Table 4. However, here we have only evaluated the error on the boundary as
the analytical solution is not as easily obtained in the rest of the domain.
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t=0.5
h llvi—ulleo | [va—ullz | [va—ulls | par000 | rate? | rate!
[[valloo [[vnll2 [[vally
0.04 0.04833 | 0.08293 0.1011
0.02 0.04108 | 0.05174 | 0.03248 | 1.176 | 1.602 | 3.113
0.01 0.03936 | 0.03525 | 0.009970 | 1.043 | 1.467 | 3.257
0.005 | 0.03894 | 0.02470 | 0.002955 | 1.010 | 1.427 | 3.373
t=1.2
h llvih—ul|eo [lvi—ul|s [lvh—ul|s rate® | rate? | ratel
[[vhloo [[vn]l2 [Ivallx
0.04 0.04516 0.03984 0.04122
0.02 0.01180 0.01001 0.01025 3.831 | 3.984 | 4.021
0.01 | 0.003023 | 0.002512 | 0.002560 | 3.907 | 3.988 | 4.004
0.005 | 0.0007592 | 0.0006287 | 0.0006400 | 3.983 | 4.000 | 4.00

Table 2: Relative error in u for the numerical solution of the free space problem with point forces at two

different times in max-, 2— and 1—norms.

t=05
h llvi—ulleo | [va—ullz | [lva=ulls | o400 | pate? | rate!
[[vh]]eo [[vall2 [[vall1
0.04 0.3051 0.2805 0.2272
0.02 0.3208 0.2760 0.1154 0.9509 | 1.016 | 1.969
0.01 0.3253 0.2769 0.05759 | 0.9871 | 0.9967 | 2.003
0.005 0.3264 0.2782 0.02872 | 0.9970 | 0.9953 | 2.005
t=1.2
h llva—ulloo | [va=ulla | [lva—ulls | phr000 | pate? | rate!
[[vh|]eo [[vnll2 [[val[1
0.04 0.1170 0.1016 0.09981
0.02 0.03400 0.02762 0.02681 3.440 | 3.678 | 3.724
0.01 0.008872 | 0.007109 | 0.006855 | 3.833 | 3.885 | 3.908
0.005 | 0.002244 | 0.001793 | 0.001724 | 3.961 | 3.972 | 3.985

Table 3: Relative error in u for the numerical solution of the free space problem with point force couples

at two different times in max-, 2— and 1—norms.
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Figure 3: The 2—logarithm of the error along a line going through the source point for a point force (left)
and a point moment source (right), both located at x = 1. The solution converges smoothly away from
the source. h =0.04(—-), 0.02(-), 0.01 (—=), 0.005 (*)

t=20.5

h [lvi=ulleo | [Iva=ull2 | [[va—=u|ls
[[vhloo [[vall2 [vallx

0.04 | 0.02797 | 0.08631 0.2007
0.02 | 0.01758 | 0.05312 | 0.1102 1.591 | 1.625 | 1.821
0.01 0.01547 | 0.04002 | 0.05028 | 1.136 | 1.327 | 2.192
0.005 | 0.01696 | 0.03696 | 0.02305 | 0.9121 | 1.083 | 2.181

rate® | rate? | rate'

t=1.1

h [lvh—ul|oo lvi—ullz | |[lvh—ulx
[[vh]]eo [lvhn]l2 [lva][1

rate® | rate? | rate!

0.04 0.2892 0.3081 0.3686
0.02 0.1082 0.1186 0.1408 | 2.673 | 2.598 | 2.618
0.01 0.03138 | 0.03496 | 0.04175 | 3.448 | 3.392 | 3.372
0.005 | 0.008189 | 0.009194 | 0.01100 | 3.832 | 3.802 | 3.795

Table 4: Relative error in u for the numerical solution of Lamb’s problem at two different times in max-,
2— and 1— norms.
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Figure 4: 3D perspective view of the USGS geologic model of the San Francisco bay area. Different
shades of gray corresponds to different rock types.

5 Real world applications

Our finite difference method has been implemented in a code intended for general elastic wave propagation
problems, but has so far mainly been used for seismic applications. The code has been written in C++
with occasional calls to Fortran routines for the computational kernels. Parallelization has been carried
out using the C++ bindings to the MPI-2 libraries and we have observed good scalability for up to 1024
processors.

The code has been used for modeling a number of seismic events, and has been extensively compared
to other existing codes and analytical approximations. The rest of this section will be devoted to a short
example.

5.1 Earthquake modeling in the San Francisco bay area

The San Francisco bay area is a densely populated area that also has a high rate of seismic activity.
Consequently there is a huge interest in trying to predict potential damage occurring due to earthquakes.
As a step in this direction we have started doing earthquake simulations of local events where there is
measurements available for comparison. As part of the earthquake hazards program at USGS, they have
compiled a database containing detailed geological data for the bay area region together with an interface
suitable for high performance computing [5]. Figure 4 shows a cut through the three-dimensional data
illustrating the different rock types having different wave propagation properties.

As an example, we have simulated an earthquake from 1999/08/18, having an epicenter near Bolinas,
California. Seismographic traces from the real event are available from multiple stations. We have
compared our data to measurements from a broadband seismic station (Black Diamond Mine, near
Antioch, California) at a distance of 72 km. A single point moment source 8 km below the surface was

17



Figure 5: The computed solution on the surface 6.17 s (left), and 23.6 s (right) after the seismic event.
The plots show contour lines of |V x |, illustrating the propagation of the transverse waves. The
epicenter of the event is located at the B and the seismic station is located at the e.

used to model the seismic event, and the grid size was 0.2 km. An added complication here was that
the domain contained large areas of shallow water where the material properties are difficult to average
correctly. Figure 5 shows snapshots of the solution at two different times on the surface while Figure 6
shows the measured displacement data as compared to our computation at the seismic station.

The results in Figure 6 corresponds reasonably well to measurements, lending credibility to both the
geological model and the modeling of the seismic source. Further validation of the bay area model will
be reported elsewhere.

6 Conclusions

The finite difference method described in this paper has been shown to work well not only for simple test
problems but also for real world applications with highly irregular data. Here we give a brief glimpse of
some work in progress and future plans for extensions of the method.

When the computational domain includes acoustic materials such as water, the method needs to be
modified in order to get good results. For water, ¢ = 0 and only longitudinal waves can propagate,
making the theory of Section 2 incomplete. We have started working on the mixed elastic-acoustic case
and initial results look promising.

As mentioned in the beginning we plan to include and also to extend the application areas to more
general engineering problems. Geometrical features will be handled by using embedded boundaries in-
tersecting the Cartesian grid. Discretizing the stress free boundary condition efficiently on the embedded
boundaries is an ongoing research topic. We also want to use a similar technique to accurately handle
internal boundaries between different materials and to satisfy the correct jump conditions on the internal
boundary instead of applying the finite difference stencil across them. Work in this direction is reported
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transverse

radial vertical

Figure 6: Recorded and computed ground motion at the Black Diamond Mine over a time interval of 80
s. The motion has been decomposed into components in a cylindrical coordinate system having its origin
at the epicenter of the event, near Bolinas. Solid lines represent the simulation results, and dashed lines
the measurements. Both the measured and the computed signals have been bandpass filtered to include
frequencies between 0.02-0.2 Hz.

in [14].

We also want to look closer at non-reflecting boundary conditions. In seismic computations, there
are significant uncertainties in material data and in the source terms. For this reason, we believe the
non-reflecting boundary conditions can be fairly simple. We only assume that the error from the artificial
boundary does not dominate other errors in the computed solution. In the future we would like to
quantify this and also examine more advanced conditions and see if they make a difference for real world
applications.
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A Self-adjointness of the spatial operator (Lemma 1)

It is straight forward to show the following summation by parts identities:

h2

(w, DZv)p = —(Diw,v)n — D (wijaviga +wijavijo) + B3> wij NN 1, (50)
1,5 4,
_ _ B2
(w, D§v)p = —(D§w, v)p — h? Zwi,j,lvi,j,l t5 Z (Wi,j,N.—1i,4,N. + Wi j,N.Vi,j,N. 1) , (51)
i,j 12

where }°, . = Zﬁvz““l_l Z;V:yl_ ' Since the solution satisfies periodic boundary conditions in the z and

y-directions, we have

(w,D%v)p = =(Diw,v)n, (w,Dgv)p =—(Dyw,v)s, (52)
(w, DY v)p, = —(DY¥w,v), (w,D§v)y = —(Dfw,v). (53)
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Consider the three terms in the left hand side of (27): LHS := I + II + III,

I= (uO,L(“)(ul,vl,wl))h, II = (UO,L(”)(ul,vl,wl))h, IIT = (wO,L(w)(ul,vl,wl))h.

Applying the summation by parts identities (50)-(53) on the first term gives

I=— (Din,Ef/z(Qu + /\)Diul)h - (Din,Ei’ﬁ(p)Diul)h - (Din,Ef/Z(p)Diul)h

- (D(”)”uo,)\ngl + )\b%wl) (D§u’, uD§v'), — (Eﬁuo,ngwl)h + B, (54)

h

where the boundary terms are
2
B(u) _ h 0 D? 1 0 D? 1 )
=75 (ugg,2tig3/2 D35 g1+ U351 i1 2 D3 o
,J

2 0 z 1 2 0 z 1
—1? Y ud g DEwl g+ Bl N i, 12 D3N,
I i
h2

0 z, .1 0 B z, .1
) (ug j,N,—1 i j,n. D§wi j n, + 3 5 N, i, N. —1 Dgwi j v, 1) -
I

The homogeneous Dirichlet boundary condition (24) gives
u?,j,N; = 0, Dng{ijz = 0
Hence, the third and fourth terms in B(*) vanish. To analyze the first term, we note that

u?

—,,0 z,0
ig2 = Wij1 T hDiu;

i,J,1°

Therefore,
h2 0 1 1 1
B = -5 D i (migisj2Diuju + iga2Diul jo+ 251 Dfw;,)
1)

h? . .
D) Z piga/2Diul 1 Diula. (55)

i,5
The first term in (55) vanishes because of the free-surface boundary condition (21) and we arrive at
) h? 0 1
B = -5 > iz Dy Diul .
2
The second term in LHS can be analyzed in the same way giving
II=-— (DiUO,Ef/2(u)Diu1)h — (DY, BY (2 + ,\)Divl)h - (DivO,Ef/2(p)Div1)h
— (D§v°, uDfu'), — (ngo,)\Dgul + )\Elgwl)h - (I%UO,MDgwl)h +BW_ (56)

where B3
BW = - D tigspDivg D5

i,3
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For the third term in LHS we get
111 = — (Din,Ef/z(u)Diwl)h - (Din,E;’/Z,(H)Diwl)h - (Din,Ef/Q(Qu + )\)Diwl)h
- (Dgwo,uﬁéul)h - (Dgwo,uﬁévl)h - (ﬁlgwo,)\Dgul + )\ngl)h +BW, (57)

where 1
B = === (i g2+ Nijs2) Diwdya Diwi

i,J
After applying the same summation by parts rules to the right hand side of (27) it is straight forward
to verify that the right hand side equals the left hand side. [ ]

B Ellipticity of the spatial operator (Lemma 3)

We will mimic the construction of the energy in the continuous case by exploring the identity

Dz 1/2(N)D+“ = D§ (uDgu) — ZD+D— (ND+D—U)

and the corresponding expressions in the y- and z-directions. We have
L™ (u, v, w) =
D2 (By(2p+ \D3u) + D (BY () DLu) + D= () (1) Diu)
+ D§ (AD§v + AD§w) + D§ (uDgv) + D§ (uDgw)
= 2D7 (Ef,(1w)D5u) + D§ (A (D§u + Dyv + Diw))
+ D§ (1 (Dgu + Dgv)) + D§ (1 (Dju + Dyw))
2

h z xr xTr xr z z z z
T (D% D* (AD%.D* u) + DY DY (uD% DY u) + D3 D* (uD? D* u))

Summation by parts gives

(u,z(“)(u,v,w))2 =
— 2 (D%u, B y(1)Dju) —~ (Dfu, A(D§u + Dfv + Diw)),
— (D§u, u (D§u + Dgv)), — (Dgu, p (Dgu + Dgw)),
h2

-7 ((D%D? u, )\DiD”ju)2 + (DYDY u, ,qu’,_Dgiu)2 + (DiD?u, ,uD_Z,_Dz_u)2)

The terms (v, E(”)) and (w, Z("’)) can be analyzed in a similar manner. The resulting expression can
be written as (33). [ ]

C Accuracy (Lemma 4)

We will prove the accuracy of the semi-discrete equations by showing that it is equivalent to another ap-
proximation which clearly is second order accurate. In particular, we want to analyze the accuracy of the
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spatial discretization (18), (19), (20) at the z = 0 boundary, where the free surface boundary condition is
applied. At this boundary, the operator 5% simplifies to D7 , which would appear to only give a first order
accurate difference formula. However, we proceed to show that this difference formula, in combination
with the discrete free-surface boundary condition, indeed results in a second order approximation.

We start by eliminating the ghost points above the free surface from the semi-discrete system (18),
(19), (20), subject to the boundary conditions (21), (22), and (23). To save space, we only go through
the details for (18) subject to (21). The terms in L) that contain z-differences on the z = 0 grid line
are

Tij =: DZ (ij/2Diuiga) + DF (NijaDiwijn) + D (mijn Dywija),

The free surface boundary condition (21) gives
Hi g1 /2 Ditigo = —pigs/2D3ui g0 — 25,1 Dowija,

Hence,

2
Tij =5 [3,5,3/2 D5 wi g + pija D§wija] + D§ (XijiDiwija) + D5 (i jaDgwi ) - (58)

We compare the spatial discretization to a fully centered scheme where the terms in L(*) that contain
z-differences on the z = 0 grid line are

Tij =: DZ (i j3/2D5 i j,1) + D§ (Nija Dgwija) + D (i jaD§wi ), (59)

We can perturb the free surface boundary condition (21) by a second order term,

(i j3/2Diwiga + pijaj2aDiwigo) + pijaDiwi g1 = bRy j. (60)

N | =

The resulting spatial discretization will be second order accurate as long as R is a difference operator
which is bounded independently of h for smooth functions. We will determine R such that (59) subject
to (60) is equivalent to (58). The boundary condition (60) gives

pi g2 Diuijo = —pij3aDiui gy — 251 Diwi 1 + 2h°R; ;. (61)
Using (61), (59) can be written

2
Tij=+ [14i.5,3/2 D% i g1 + i Dgwija] + Df (Nija Dgwij1) + D§ (i j,1 Diwi i) + 2hR 5.
Hence, T' = T if
D§ (NijaDiwi i) + DA (pijiDgwija) = D§ (NijaD§wija) + D§ (pi,ja Dfwi j1) + 2hRi ;.

We have B
Diw = Diw — §D_Z|_Dz_w,
which gives
1 1
Rij = D5 (i1 DiDwija) + 7 D3 D2 (i ja Dgwija)-
Similar calculations show that the boundary conditions (22) and (23) can be perturbed by second order
terms to account for the difference between a fully centered and a one-sided spatial discretization in L(*)
and L(*) | respectively.

This proves that the semi-discrete approximation (18)-(20) subject to the boundary conditions (21)-
(23) is second order accurate. | |

22



Note: Inserting the expression for R; ; into (60) shows that the fully centered approximation couples
all ghost points (k = 0) along the free surface. Hence, using this formulation would require a linear
system to be solved to obtain the ghost point values at each time step. As we have demonstrated, the
same solution can be obtained without solving a linear system by using our one-sided formula on the
boundary.
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